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Glucocorticoids are widely employed for treating various disorders, but their administration 
is associated with multiple adverse effects. To study and understand these side effects, pre-
clinical animal models have been developed. Experimental models that replicate essential 
aspects of human diseases offer valuable tools for assessing potential therapeutic agents and 
elucidating molecular and cellular pathways in a controlled environment. In this review, we 
provide an overview of various animal models in which glucocorticoids have been utilized 
to induce humanlike disorders across different body systems. These disorders encompass 
hypertension, skin atrophy, hair loss, insulin resistance, dyslipidemia, gastric mucosal 
damage, growth retardation, muscle atrophy, osteoporosis, osteonecrosis, depression-like 
behavior, glaucoma, and cataracts.

www.phypha.ir/ppj

Review Article
Physiology and Pharmacology 27 (2023) 211-233

Glucocorticoids (GCs) are a main type of steroid 
hormones that play a crucial role in the functioning of 
mammalian cells. Cortisol (hydrocortisone), primarily 
produced in the adrenal gland cortex, is the most abun-
dant GC in humans. Various physiological actions such 
as glucose and fat metabolism, homeostasis, mood and 
cognitive performance, and the functioning of vital sys-
tems such as the immune, cardiovascular and reproduc-
tive systems are governed by this hormone (Timmer-
mans et al., 2019).

 Numerous synthetic GCs with different potencies and 
pharmacokinetic profiles, such as prednisolone, meth-

ylprednisolone, betamethasone, dexamethasone, flut-
icasone, etc., have been developed to address a range 
of health issues. GCs are currently the most effective 
medications for treating inflammatory and autoimmune 
diseases, along with various other disorders. Never-
theless, the administration of GCs is associated with 
multiple adverse effects, particularly during prolonged 
uses of high doses due to their broad-ranging impact on 
numerous organs and regulation of key endocrine sys-
tem functions. These extensive and potentially harmful 
side effects, including cardiovascular disorders, hyper-
glycemia, osteoporosis, glaucoma, infections, etc., can 
limit the use of GCs and exacerbate a patient’s health 
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problems (Timmermans et al., 2019). Currently, many 
of these adverse effects are being considered for the de-
velopment of pre-clinical animal models. These models 
aim to elucidate the mechanisms underlying the un-
wanted actions of GCs and evaluate the effects of novel 
pharmacological agents on various systemic and endo-
crine disorders. This review will provide an overview of 
different animal models in which GCs have been used 
to induce human-like disorders in various body systems 
and will discuss the possible underlying mechanisms 
(Figure 1 and Table 1).

Cardiovascular System 
Hypertension 
Hypertension is a common occurrence in Cushing’s 

syndrome and with chronic exposure to exogenous cor-
ticosteroids. What sets this high blood pressure apart 
is its early onset and its tendency to persist for several 
years. It affects approximately 70–85% of adults and 
50–78% of children with endogenous Cushing’s syn-

drome, as well as around 20% of patients who have 
been on long-term corticosteroid treatment (Isidori et 
al., 2015). Most patients experience mild-to-moderate 
hypertension, while a severe form may affect 17% (Ci-
cala and Mantero, 2010). 

Various mechanisms have been proposed for GCs-in-
duced hypertension, including oxidative stress, increas-
ing sensitivity of vascular smooth muscle cells to va-
soconstrictors, heightened activity of the sympathetic 
nervous system, elevated plasma levels of renin sub-
strate and endothelin, along with reduced levels of va-
sodilator hormones and nitric oxide (Ong et al., 2009; 
Sato et al., 1992, Dubey et al., 2017; 1992; Kumai et 
al., 2000).  

GCs play a significant role in blood pressure regula-
tion in animals. GCs receptors are broadly present in 
tissues relevant to blood pressure control, such as the 
brain, renal, and vascular tissues (Ong et al., 2009). For 
instance, oral administration of hydrocortisone (8 mg/
kg twice/day for 12 weeks) in dogs has been linked to 
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FIGURE 1.FIGURE 1. A schematic drawing of different animal models in which glucocorticoids are used for induction of human disorders in different 
body systems.
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TABLE 1:TABLE 1: A summary of various animal models induced by glucocorticoids.

Animal species GC type Dosage and administration Reference
GC-induced hypertension

Dog, Beagle Hydrocortisone 8 mg/kg twice/day for 12 weeks, 
orally Schellenberg et al, 2008

Rat, Wistar Methylprednisolone 20 mg/kg/week for 4 weeks, s.c. Kohlmann et al, 1981

Rat, Wistar; 
Sprague-Dawley Dexamethasone 10-30 μg/kg/day for 2-8 weeks, 

s.c.
Dubey et al, 2017; Safaeian 

et al, 2015; Li et al, 1997

Rat, Wistar Dexamethasone 1 mg/kg/day for 10 days, s.c. Kumai et al, 2000

Rat, Wistar Dexamethasone 2.5 mg/L in drinking water for 8 
days, orally Okuno et al, 1981

Dog, Mongrel Dexamethasone 0.5 mg/kg/day for 10 days, 
orally Nakamoto et al, 1991

GC-induced skin atrophy

Rats, Hairless hr/hr 0.01% Methylprednisolone aceponate
75 µl on 9 cm2 once daily for 
5-19 days, topically on dorsal 

skin
Mirshahpanah et al, 2007

Rat, Sprague-Dawley
Hydrocortisone, Hydrocortisone butyrate, 

Dexamethasone, Budesonide, Prednisolone, 
Betamethasone, Triamcinolone acetonide

10 μL for 12 days, topically on 
the flank Young et al, 1977

Rat, Sprague-Dawley

1% Hydrocortisone cream, 0.1% Betametha-
sone valerate cream, 0.025% Betamethasone 

benzoate cream, 0.05% Flurandrenolide 
cream, 0.05% Fluocinonide cream, 0.1% 

Dexamethasone cream, 0.03% Flumethasone 
pivalate cream

0.1 g for 28 days, topically on 
the flank Smith et al, 1976

Rat, albino 0.05% Clobetasol propionate cream 0.25 g/kg once a day for 15 days, 
topically Fawzy et al, 2019

Mouse, C57BL-6 Fluocinolone acetonide 1 μg every 72 h for 14 days, 
topically Agarwal et al, 2019

GC-induced hair loss

Mouse, C57BL-6 0.1% Dexamethasone-21-acetate
0.8-1 mL, once daily from days 
9-13 post-depilation, topically 

on the back
Paus et al, 1994

Mouse, C57BL-6 0.05% Betamethasone
once daily starting at the time of 

anagen induction for 14 days, 
topically over truncal skin

Stenn et al, 1993

GC-induced insulin resistance

Rat, Wistar Dexamethasone 1 mg/kg/day for 5-10 days, i.p. Motta et al, 2015; Martínez et 
al, 2016

Rat, Sprague-Dawley Dexamethasone 1.5 mg/kg for 6 days, i.m. Olefsky et al, 1975

Rat, Sprague-Dawley Corticosterone 4×100 mg pellets implanted s.c. 
+ high-fat diet for 16 days Shpilberg et al, 2012
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Animal species GC type Dosage and administration Reference
GC-induced dyslipidemia

Rat, Wistar Dexamethasone 10 mg/kg/day for 7 days, s.c. Safaeian et al, 2018; Mahen-
dran and Devi, 2001

Rat, Wistar Methylprednisolone succinate 50 mg/kg single dose, i.m. Hazra et al, 2008

Rat, Sprague-Dawley Corticosterone 2×150 mg pellets implanted s.c. 
for 10 days Campbell et al, 2011

GC-induced gastric mucosal damage

Rat, Wistar Dexamethasone 4 mg/kg/day for 4 days, s.c. Wallace, 1987

Rat, Wistar Prednisolone-21-sodium succinate 50 mg/kg for 6 days, s.c. Wallace, 1987

Rat, Wistar Dexamethasone 1 mg/kg single dose, i.m. + pylo-
rus or esophagus ligation Bandyopadhyay et al, 1999

Rat, Wistar Dexamethasone 0.4- 4 mg kg/day for1- 6 days, 
i.p. Filep et al, 1992

GC-induced growth retardation

Mouse, FVB Dexamethasone
2 or 20 μg/kg/day, 5 days/week 
for 4 weeks; 2 mg/kg/day for 7 

days, s.c.

Rooman et al, 2017; Smink et 
al, 2002

Mouse, BL6 Dexamethasone 5 mg/kg/day for 7 days, s.c. Owen et al, 2009

Rat, Sprague-Dawley Dexamethasone 40 μg/kg/day for 24 days, i.p.; 5 
mg/kg/day for 7 days, s.c.

Tulipano et al, 2007; Chrysis 
et al. 2003

Rat, Wistar Fluticasone propionate 250 μg for 10 days, inhaled Kemer et al, 2015

Rat, Wistar Methylprednisolone 1, 3, 6, 9 mg/kg/day for 90 days, 
s.c. Ortoft et al. 1998b

Rat, Wistar Corticosterone 40 mg/kg/day for 3 weeks, s.c. Silvestrini et al. 2000

Rat, Wistar Prednisolone 5 mg/kg/day for 80 days, s.c. Ortoft et al. 1998a

Rabbit, New Zealand Dexamethasone
0.24 to 0.62 mg/kg/day (20 µl, 

10 times daily over 13 hour) for 
8 weeks, eye drops

Kugelberg et al. 2005

Rabbit, New Zealand Dexamethasone
80 ng/µl (1 µl/hour) over 7 days, 
local infusion into one proximal 

tibial
Baron et al. 1992

Piglet, Yorkshire Dexamethasone 0.5, 0.3, 0.2 mg/kg/d for 14 
days, oral gavage Ward et al. 1998

GC-induced muscle atrophy

Rat, Sprague-Dawley Prednisolone 5 mg/kg/day for 5 days, s.c. Eason et al, 2000

Rat, Sprague-Dawley Triamcinolone acetonide 5 mg/kg/day for 9 days, i.p. Lee et al, 2001

Rat, Sprague-Dawley Dexamethasone 600 µg/kg/day for 5 days, i.p. Noh et al, 2014; Yamamoto et 
al, 2010

Rat, Wistar Dexamethasone 2 mg/kg/day for 2 weeks, s.c. Hedya et al, 2019; Konno, 
2005
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Animal species  GC type  Dosage and administration Reference

GC-induced osteoporosis

Mouse, Swiss Webster Prednisolone 5 mg/kg for 60 days, s.c. pellet Yao et al, 2008

Mouse, C57BL/6J Prednisolone 1.4, 2.1 mg/kg for 28 days, s.c. 
pellet Sato et al, 2016

Mouse, CD1 Swiss Corticosterone 15 mg/kg/day for 28 days, s.c. 
pellet Herrmann et al, 2009

Mouse, BALB/c Dexamethasone 1, 5, 10 mg/kg/day for 14-28 
days, i.p. McLaughlin et al, 2002

Rat, Wistar Prednisolone 15 mg/kg/day every other day 
for 42 days, oral gavage Yokote et al, 2008

Rat, Wistar Methylprednisolone 1 mg/kg/day weekly for 42 days, 
s.c.

Wimalawansa and Simmons 
1998

Rat, Sprague-Dawley Prednisolone 1.5, 3.0 and 6.0 mg/kg/day for 
90 days, oral gavage Lin et al, 2014

Rat, Sprague-Dawley Methylprednisolone 30 mg/kg/day for 60 days, s.c. Bitto et al. 2009

Rat, Sprague-Dawley Dexamethasone 0.7 mg/kg/day twice a week for 
42 days, i.m. Jiang et al. 2016

Rabbit, New Zealand Methylprednisolone 1 mg/kg/day for 56 days; 2 mg/
kg/day for 28 days, i.m.

Baofeng et al, 2010; Lin et 
al. 2016

Rabbit, New Zealand Dexamethasone 0.9 mg/kg/day twice a week for 
84 days, i.m. Yongtao et al, 2014

GC-induced osteonecrosis

Rabbit, New Zealand Methylprednisolone
20 mg/kg/day, 3 doses, i.m. +

Zhang et al, 200910 μg/kg lipopolysaccharide, 
single dose, i.v.

Rabbit, Japanese Methylprednisolone
10 μg/kg/day, 3 doses, i.m. + 

100 μg/kg lipopolysaccharide, 2 
doses, i.v.

Yamamoto et al, 1995

Rabbit, Japanese Methylprednisolone 20 mg/kg/day, single dose, i.m. Yamamoto et al, 1997

Rabbit, New Zealand Methylprednisolone 10 μg/kg, single dose, i.v. Sheng et al, 2009

Rat, Sprague-Dawley Methylprednisolone
40 mg/kg/day, 3 doses, i.m. + 
10 mL/kg/week human serum 

for 2 weeks, i.p.
Bekler et al, 2007

Rat, Sprague-Dawley Methylprednisolone

100 mg/kg/day for 3 days 
followed by 40 mg/kg, 3 

times/week, i.p., 2-6 weeks 
after 0.2 mg/kg lipopolysaccha-

ride single dose, i.v.

Zheng et al, 2018

Mouse, BALB/cJ Dexamethasone 4 mg/L for 12 weeks, orally in 
drinking water Yang et al, 2009

Pig, Domestic Methylprednisolone 30 mg/kg bolus, followed by 5.4 
mg/kg/h for further 23 h, i.v. Drescher et al, 2004

Chickens, Leghorn Methylprednisolone 3 mg/kg/week for 6-12 weeks, 
i.m. Wang et al, 2000
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Animal species GC type Dosage and administration Reference

GC-induced depression

Rat, Lister Corticosterone 100 mg for 1 week, s.c. pellet Fernandes et al, 1997

Rat, Wistar Corticosterone 40 mg/kg for 1 month, s.c. Sousa et al, 2000

Mouse, C57BL/6 Corticosterone 20 mg/kg for 21 days, s.c. Ma et al, 2018

Mouse, Swiss Dexamethasone 64 μg/kg, single dose or 16 μg/
kg for 14 days, s.c. Wróbel et al, 2015

Mouse, NMRI Dexamethasone 15, 60 or 250 μg/kg, single dose 
or 15 μg/kg for 7 days, s.c. Mesripour et al, 2019

Mouse, C57BL/6 Prednisolone 50 or 100 mg/kg for 6 or 7 days, 
s.c. Kajiyama et al, 2010

GC-induced glaucoma

Mouse, C57BL/6J Dexamethasone 20 μL/eye, once a week for 10 
weeks, periocular Maddineni et al, 2020

Mouse, C57BL/6J Dexamethasone phosphate (0.1%) 3 times/day for 6 weeks, topical 
ocular Zode et al, 2014

Mouse, C57BL/6J Dexamethasone 3-4 mg/kg/day for 3-4 weeks, 
s.c. osmotic mini-pumps Overby et al, 2014

Mouse, C57BL/6 Triamcinolone acetonide 40 mg/mL (20 µL bolus) sub-
conjunctivally Kumar et al, 2013

Rat, Wistar Dexamethasone (0.1%) 4 times/day for 1, 2 and 4 weeks, 
topical ocular Sawaguchi et al, 2005

Rabbit, New Zealand Dexamethasone 21-phosphate, Betametha-
sone 17-valerate

0.1 ml/0.5 mg (Dexamethasone), 
0.1 ml/4 mg (Betamethasone), 

subconjunctivally
Song et al, 2011

Rabbit, New Zealand
0.1% Dexamethasone, 1% Rimexolone, 0.5% 
Loteprednol etabonate, 0.1% Fluorometho-

lone

4 times/day for 1 month, topical 
ocular Qin et al, 2010

GC-induced cataract

Rabbit, Dutch Belt Triamcinolone acetonide, Fluocinolone ace-
tonide

2 mg (Triamcinolone), 1 mg 
(Fluocinolone), intravitreally

Hernandez-Denlinger et al, 
1985

Rabbit, New Zealand Dexamethasone, Prednisolone, Cortisol 20-200 nmol/0.2 mL, intravit-
really Bucala et al, 1985

Rabbit, New Zealand 1.5% cortisone acetate, 0.2% hydrocortisone, 
0.1% Dexamethasone

3 times/day for 4-6 months, 
topical ocular Wood et al, 1967

Rat, Brown Norway Prednisolone
1% solution topical drop or 

10 mg/kg/day, 3 times pulse/2 
months for 16 months, i.v. pulse

Nagai et al, 2004

Chick Embryo Dexamethasone, Hydrocortisone, Predniso-
lone 0.25 μM in culture system Kosano H, Nishigori, 2002

mild but significant increases in systemic blood pressure 
(Schellenberg et al., 2008). In a study by Kohlmann et 
al., rats exhibited significant increases in mean arterial 
pressure after receiving subcutaneous (s.c.) methylpred-
nisolone at a dose of 20 mg/kg/week for 4 weeks (1981). 
Among various GCs, dexamethasone, a long-acting and 

potent drug, is typically used as an endocrine model 
of hypertension in rats to elucidate the mechanisms of 
GC-induced hypertension in humans. Interestingly, this 
form of high blood pressure is not blocked by classical 
glucocorticoid receptor blockers and resembles some 
forms of essential hypertension (Whitworth et al., 2001)
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Different dexamethasone regimens have been studied, 
but doses ranging from 0.01-0.03 mg/kg/day, s.c. for 
2-8 weeks are commonly used to induce hypertension 
in rats (Safaeian et al., 2015; Dubey et al., 2017; Li et 
al., 1997). Higher doses of dexamethasone, such as 1 
mg/kg/day, s.c. for a shorter duration (2 days), have also 
been shown to elevate blood pressure in rats (Kumai et 
al., 2000). Okanu et al., adminstrated dexamethasone at 
a dose equivalent to 0.030-0.060 mg/kg/day orally for 8 
days by adding 2.5 mg/L to the rats’ drinking water to 
induce high blood pressure. They found that dexameth-
asone-induced hypertension was independent of sodium 
retention or aldosterone activity (1981). In a study by 
Nakamoto et al., dogs experienced an increase in blood 
pressure after oral treatment with high doses of dexa-
methasone (0.5 mg/kg/day) for 10 days (1991).

Although many experimental investigations have 
shown the hypertensive effects of corticosteroids in var-
ious laboratory animals such as dogs, sheep, mice and 
rats, several differences in clinical features compared to 
human hypertension have limited the use of certain ani-
mal species. For example, the development of resistance 
in kidney vasculature occurs in humans and rats, but not 
in sheep (Whitworth et al., 2001). Another limitation is 
that GC-induced hypertension is less pronounced than 
in other models, such as the deoxycorticosterone ace-
tate-salt induced model, leading to only mild increases 
in systemic blood pressure (Lin et al., 2016). Moreover, 
the complexity of multiple mechanisms and compensa-
tory responses may hinder the development of specific 
treatments in this hypertension model. 

Dermatologic System 
Skin Atrophy
Topical GCs, which are used to treat inflammatory 

skin diseases, can cause structural changes in skin tis-
sue, appearing as dermal atrophy, striae atrophicans, 
rubeosis iridis, acne, purpura, delayed lesion healing, 
and, to a lesser extent, hypertrichosis. The most com-
mon side effect resulting from both topical and systemic 
GC therapy is skin atrophy. This involves alterations in 
the skin’s architecture, including a reduction in dermal 
cells, loss of elasticity, increased brittleness, telangiecta-
sia, bruising, and heightened skin transparency (Niculet 
et al., 2020; Alan and Alan, 2018). The incidence of skin 
atrophy is affected by factors such as the type of GCs, 
drug vehicle, frequency of application, treatment dura-

tion, and the area where the drug is applied (Schoepe et 
al., 2006). 

GCs exert their catabolic and antimitogenic effects 
on both the dermis and epidermis (Schoepe et al., 2006; 
Maubec et al., 2015). They reduce the size of fibroblasts 
and keratinocytes, inhibit their reproduction, and hinder 
the synthesis of hyaluronic acid. These acttions result 
in a decrease in epidermal thickness, skin barrier thick-
ness, and elasticity. Consequently, the skin becomes 
more permeable, leading to water and electrolyte loss 
(Delforno et al., 1978; Kolbe et al., 2001).  GCs also 
facilitate water permeability through the transdermal 
space by affecting the lipid layeron the upper surface 
of the epidermis. Additionally, they have a catabolic ef-
fect on skin components such as ceramides, cholesterol, 
and fatty acids, disrupting the skin’s protective function 
(Niculet et al., 2020; Shue et al., 1997). This deteriora-
tion of extracellular matrix (ECM) proteins, including 
fibronectin, collagen, proteoglycans, elastin, and metal-
loproteinases, affects the flexibility and firmness of skin 
(Niculet et al., 2020; Schoepe et al., 2006; Røpke et al., 
2017). 

In animal studies, skin atrophy induced by GCs is of-
ten investigated using dogs, pigs, mice and especially 
rats. Various GCs, such as hydrocortisone, hydrocorti-
sone butyrate, dexamethasone, prednisolone, betameth-
asone, budesonide, and triamcinolone acetonide, all 
have been shown to induce dermal atrophy. Smith et al. 
(1976) evaluated the topical application of various GCs 
on rats’ flank skin areas for 28 days. Skin atrophy was 
measured by comparing the weight of treated skin sec-
tion (1.6 cm diameter) dissected from the treated area 
with that of the non-treated opposite area in rats after 12 
days of GC application (Young et al., 1977). Fawzy et 
al. (2019) induced GC-induced skin atrophy in rats by 
applying 0.05% clobetasol propionate cream at a dosage 
of 0.25 g/kg once a day for 15 days. Currently, hairless 
animals like hr/hr rats are favorite for this purpose (Mir-
shahpanah et al., 2007; Schoepe et al., 2006). In mice, 
skin atrophy has been reported following topical admin-
istration of fluocinolone acetonide at a dose of 1 μg ev-
ery 72 h for 14 days (Agarwal et al., 2019).

It’s important to note that the skin atrophy model in 
preclinical studies has limitations in fully replicating at-
rophy in humans due to anatomical differences between 
rodent and human skin, such as the presence of large 
number of skin appendages and the absence of a papil-



lary dermis in rodents, that may change pharmacokinet-
ic patterns (Schoepe et al., 2006).

Hair Loss
Hair loss, which can appear in different patterns, can 

be a consequence of stress or in other words, exposure to 
high levels of endogenous or exogenous GCs. Accord-
ing to the report of European Registry on Cushing’s syn-
drome, 31% of people with Cushing’s syndrome suffer 
from hair loss. Additionally, excess and prolonged use 
of systemic corticosteroids increases the incidence of 
hair loss (Lee and et al., 2017). However, topical forms 
of GCs are extensively employed as the first-line treat-
ment for conditions like alopecia areata due to their an-
ti-inflammatory properties (Amin and Sachdeva, 2013). 

Some GCs such as dexamethasone,  have been report-
ed to Activate apoptotic signals and have an inhibitory 
effect on various growth factors in dermal papilla and 
hair follicle cells (Kwack et al., 2017).

Paus and co-workers introduced a mouse model for 
studying the regressing phase (catagen) of hair follicles 
based on the skin pigmentation. They achieved this by 
topically administrating 0.1% dexamethasone-21-ace-
tate once a day for 5 days (on days 9-13 after depila-
tion) on growing follicles in anagen phase, which was 
induced by depilation on the backs of female C57BL-6 
mice. In their study, topical dexamethasone application 
significantly accelerated the transition tocatagen-like 
follicles in terms of both width and uniformity. This an-
imal model can be valuable for investigating the molec-
ular and cellular aspects of the catagen phase (1994). 
However, they had previously reported the inhibitory ef-
fect of topical betamethasone on anagen development in 
depilated mice, suggesting a dual action of potent GCs 
on the catagen phase, possibly due to the involvement 
of activated macrophages in hair growth (Stenn et al., 
1993). Another limitation is that the therapeutic role of 
topical GCs in alopecia areata, through anti-inflammato-
ry effects, may create some misperception in this model.

Endocrine and Metabolic System
Insulin Resistance
GCs play a pivotal role in regulating glucose metab-

olism under physiological and pathological situations.
During fasting, cortisol, along with other regulatory hor-
mones, helps maintain blood glucose levels by reducing 
glucose consumption and increasing its production. Pro-

longed and high-dosage of GC use induces fasting-like 
conditions, leading to insulin secretion and hyperglyce-
mia in mammals (Lambillotte et al., 1997). This condi-
tion, known as steroid diabetes, is responsible for 2% of 
diabetes cases (Notman, 1984). Various in vitro and an-
imal models have been utilized to elucidate the possible 
mechanisms behind the disruption of glucose homeosta-
sis due to chronic GC use. These mechanisms involve 
alterations in the liver, skeletal muscles, adipose tissue, 
and pancreases. Administration of GCs in animals can 
result in the development of type 2 diabetes mellitus or 
metabolic syndrome. Rapid onset of diabetes symptoms 
has been observed when GC use is combined with a 
high-fat diet in a rat model (Shpilberg et al., 2012). 

Motta et al. (2015) showed that intraperitoneally (i.p.) 
treatment of Wistar rats with dexamethasone (1 mg/kg/
day for 5 days) led to elevated blood glucose and insu-
lin levels, concurrent with insulin resistance and glucose 
intolerance. They reported increased glycerol secretion, 
reduced activity of protein kinase B, and insulin recep-
tor substrate in epididymal adipose tissue. Changes in 
the expression of glucose transporters and their trans-
location to the plasma membrane have been found fol-
lowing GCs administration in some studies (Sakoda et 
al., 2000). 

GCs promote hepatic glucose production and reduce 
glucose transport in peripheral tissues by upregulating 
the genes for phosphoenolpyruvate-carboxy kinase and 
glucose-6-phosphatase (Pasieka and Rafacho, 2016; 
Aschenbach et al., 2010). In a study by Olefsky et al. 
(1975) insulin binding to isolated hepatocytes decreased 
in rats after receiving 1.5 mg/kg dexamethasone for 6 
days, while binding returned to near-normal levels with 
chronic low-dose usage (125 mg/kg for 21 days), possi-
bly due to reduced insulin resistance. 

Skeletal muscles are another important organ that af-
fect the glucose homeostasis (Beaupere et al., 2021). 
Treatment of rats with dexamethasone (1 mg/kg/day, 
i.p.) resulted in a significant reduction in glucose uptake 
in response to insulin and glycogen synthesis in soleus 
and epitrochlearis muscles and epididymal adipocytes. 
This occurred through the downregulation of protein 
kinase B expression and insulin-stimulated phosphor-
ylation (Burén et al., 2008). Other mechanisms con-
tributing to GCs-induced insulin resistance in muscles 
include increased epinephrine concentration, reduced 
GLUT4 levels, impaired translocation of GLUT4 to the 
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cell membrane, dysregulation of lipid metabolism with 
increased lipolysis and β-oxidation, and elevated in in-
tramuscular triglyceride levels (Kennedy et al., 1993; 
Ruzzin et al., 2005). 

GCs also disturb adipose tissue, promoting lipolysis 
by upregulating the expression of lipolytic enzymes 
and causing the release of free fatty acids and glycerol 
into the bloodstream. This can result in insulin-resis-
tance in adipose tissue due to changes in gene expres-
sion (Djurhuus et al., 2004). The release of adipokines, 
like leptin and adiponectin, from adipose tissue, which 
are contributed in glucose and lipid metabolism, appe-
tite control, and energy balance, is also affected by GCs 
(Geer et al., 2014).

Pancreatic β-cells may also be influenced by GCs. 
While in vitro studies have shown that GCs suppress 
β-cells viability and their ability to produce and secret 
insulin, in vivo studies have yielded contradictory re-
sults due to variations in models and GC dosages (Beau-
pere et al., 2021). Pancreatic α-cells are also affected by 
GCs, leading to an increase in glucagon concentration 
as an adaptive response to elevated insulin levels result-
ing from insulin resistance (Rafacho et al., 2014). GCs 
also suppress glucagon-like peptide-1, a hormone that 
promotes the proliferation of pancreatic beta cells and 
reduces insulin resistance (Kappe et al., 2015). 

Due to the wide role of GCs in the body, different 
pathways must be considered simultaneously in animal 
models to interpret the mechanisms underlying GC-in-
duced insulin resistance. Additionally, it is important to 
note that high doses of GCs are typically required to in-
duce diabetes in laboratory animals, often several times 
higher than standard laboratory animals doses (Shpil-
berg et al., 2012).

Dyslipidemia
Dyslipidemia is one of the metabolic changes that may 

occur following chronic exposure to GCs and in Cush-
ing’s syndrome. These effects on lipid metabolism in-
clude the development of typical features seen in Cush-
ing’s syndrome, which are similar to those observed in 
metabolic syndrome, such as obesity, insulin resistance, 
increased fasting blood glucose, total cholesterol, and 
triglycerides levels (Hazra et al., 2008). 

GCs induce dyslipidemia via affecting the expression 
of lipoprotein receptor genes and apolipoprotein genes, 
as well as the production and clearance of lipoproteins 

and free fatty acids (Wang et al., 2012). Long time expo-
sure to high doses of GCs can increase the formation of 
very-low-density lipoproteins (VLDL) in the intestine 
and liver, decrease the expression of LDL receptors, re-
duce the activity of lecithin cholesterol acetyl transfer-
ase, reduce the production of apolipoprotein E while in-
creasing its catabolism, stimulate intravascular lipolysis 
of triglycerides, enhance lipoprotein lipase activity, and 
subsequently promote lipolysis in adipose tissue. This 
leds to increased levels of circulating free fatty acids 
(Ross and Marais, 2014; Sun et al., 2021). 

Fatty liver and steatosis occur due to the motivation of 
AMP-activated protein kinase, decreased activity of he-
patic lipoprotein lipase, augmented lipogenesis, VLDL 
and fatty acid synthesis, which result from increases in 
the activity of key lipogenic enzymes, including ace-
tyl-CoA carboxylase and fatty acid synthase. Addition-
ally, fatty acid β oxidation is suppressed (Arnaldi et al., 
2010; Sun et al., 2021). Moreover, increased production 
of free radicals and oxidative damage to the liver have 
been described during dexamethasone-induced dyslip-
idemia (Safaeian et al., 2018). 

In animal studies, a single dose of hydrocortisone has 
been shown to elevate LDL and VLDL in athero¬scle-
rotic rabbits (Nagornev et al., 1980). Administration of 
dexamethasone, triamcinolone, and methyl prednisone 
(but not hydrocortisone) has been associated with hy-
pertriglyceridemia, hypercholesterolemia and increased 
free fatty acids in rats (Mahendran and Devi, 2001; 
Staels et al., 1991). However, some variations have been 
reported in the blood levels of HDL, LDL, VLDL, apo-
lipoprotein A1, and apolipoprotein E (Mahendran and 
Devi, 2001; Staels et al., 1991). 

As an established model, s.c. injection of dexametha-
sone (10 mg/kg/day) for about 1 week has been used to 
induce dyslipidemia in Wistar rats in some studies (Sa-
faeian et al., 2018; Safaeian et al., 2018; Kumar et al., 
2011).

An increase in preadipocytes differentiation, bas-
al lipolytic rate, and increased expression and activity 
of lipolytic enzymes, such as hormone-sensitive lipase 
and adipose triglycerides lipase, have been observed in 
Sprague-Dawley rats after receiving s.c. implantation of 
pellets containing corticosterone (300 mg for 10 days) 
(Campbell et al., 2011). In the study by Hazra et al., the 
administration of 50 mg/kg methylprednisolone intra-
muscularly (i.m.) produced transient changes in LDL 
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receptor mRNA, plasma total cholesterol, and LDL in 
rats (2008).

The main limitation of GC-induced dyslipidemia is 
that the rate of lipid irregularities and the balance be-
tween lipolytic and lipogenic actions of GCs can vary 
widely. This variability depends on factors such as age, 
gender, underlying pathological conditions, type and 
dosage of GC, duration of treatment, and potential drug 
interactions (Alan and Alan, 2018). Moreover, high dos-
es of GCs are required to induce hyperlipidemia, which 
may be associated with side effects such as GC-induced 
skeletal muscle loss and severe body weight loss in lab-
oratory animals (Dunford and Riddell, 2016).

Gastrointestinal System
Gastric Mucosal Damage
GCs affect the stomach through a dual function. Un-

der normal or stressful circumstances, GCs play a role 
in gastroprotection by maintaining gastric blood flow, 
reducing gastric motility and microvascular permeabil-
ity, regulating short-time blood glucose levels, and thus 
protecting gastric mucosal integrity (Filaretova, 2011). 
However in pathological situations and with prolonged 
high-dose pharmacological use, they can lead to stom-
ach ulcers (Filaretova et al., 2009).

Several mechanisms have been proposed to explain 
the pro-ulcerogenic effect of GCs. These include a re-
duction in the synthesis and secretion of gastric mucus 
and changes in its biochemical composition, inhibition 
of bicarbonate secretion or alkaline response, delayed 
gastric wound healing by inhibiting prostaglandin pro-
duction, induction of gastric cell hyperplasia leading to 
increased acid output, and a decrease in epithelial cell 
turnover (Henderson and Webster, 2006).

  It has been shown that daily injections of dexameth-
asone at the dose of 4 mg/kg or prednisolone at the dose 
of 50 mg/kg, s.c. for 4-6 days, are ulcerogenic in rats 
(Wallace, 1987). Even in non-ulcerogenic doses (0.1 
or 0.2 mg/kg/day orally for 9 days), dexamethasone 
delayed the healing of gastric erosion in acetic acid-in-
duced gastric ulcers in rats. This delay was attributed 
to its impact on the regenerative system, including a 
reduction in epithelial cell proliferation, mucus produc-
tion, and angiogenesis at the ulcer site (Luo et al., 2003). 
Bandyopadhyay et al. (1999) also reported increased 
basal and drug-induced gastric acid secretion 24 h after 
treatment with dexamethasone (1 mg/kg, i.m.), which 

was attributed to the inhibition of peroxidase and pros-
taglandin synthetase in rats. In another study, treatment 
with dexamethasone (0.4-4 mg/kg, daily for 1-6 days) 
led to the significant injury to the mucosa layer of the rat 
stomach in a time- and dose-dependent manner, which 
was related to an increase in tissue platelet-activating 
factor levels in the stomach (Filep et al., 1992). 

Musculoskeletal System
Growth Retardation
There is a concern about the reduction in growth ob-

served in children, potentially affecting their final adult 
height, during long-term treatment with GCs, even 
when administrated in nasal and respiratory dosage 
forms (Skoner et al., 2000). GCs suppress the growth 
hormone and insulin like growth factor-1 (IGF-1) path-
way through inhibition of growth hormone release, de-
creasing IGF-1 expression, and impairing its signaling 
in chondrocytes of growth plate. Additionally, GCs have 
other suppressive effects on chondrocytes, such as the 
inhibition of angiogenesis and the decomposition of 
ECM (Wood et al., 2018; Smink et al., 2002).

For evaluation of growth, routine weight and height 
(length of body or tail) measurements are performed in 
animal studies. Dexamethasone has been widely used to 
induce growth retardation in rodent models, with vari-
ous dosages ranging from 0.02 to 5mg/kg/day for 7 to28 
days. Totally, daily s.c. injections of dexamethasone at 
doses of 2–5 mg/kg yield the best results in inducing 
growth retardation (Wood et al., 2018). In mice, dexa-
methasone has been injected s.c. in 3- and 5-weeks old 
(Rooman et al. 2017). Male Sprague–Dawley or Wistar 
rats, up to 4 months old, have been used in some studies, 
showing varying durations of growth inhibition, from 4 
to 90 days. However, rapid catabolic changes and severe 
weight loss resulting from high GC doses can interfere 
with results. Therefore, it is suggested to consider more 
precise parameters, such as bone length measurements 
or histological examination of the growth plate. Another 
limitation in GC-induced growth retardation studies is 
the variation in the timing of growth plate closure and 
sexual maturity based on the sex and species of labora-
tory animals (Wood et al., 2018). 

Muscle Atrophy 
Myopathy resulting from chronic administration of 

GCs is the most prevalent pharmacological cause of 
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muscle atrophy. Approximately 60% of individuals with 
Cushing’s syndrome suffer from muscle wasting (Gupta 
and Gupta, 2013). Fluorinated GCs such as dexameth-
asone, triamcinolone, and betamethasone pose a higher 
risk of myopathy, however, any frequently prescribed 
GC can trigger myopathy (Anagnos and Ruffi, 1997). 
This harmful effect is primarily observed in type IIb 
(glycolytic) muscle fibers, while its impact on type I 
(oxidative) fibers is minimal (Schakman, et al., 2008). 

Qualitative changes in the contractile apparatus during 
GC-induced myopathy include a reduction in collagen 
synthesis, increased degradation of myofibrillar proteins 
due to stimulation of ubiquitin-proteasome system, and 
a decrease in the synthesis rate of myosin heavy chain 
type II and actin (Alev et al., 2018). 

Various animal experiments have been conducted 
to understand the mechanism of GCs-induced myop-
athy. For example, prednisolone injection with a dos-
age similar to the most common prescribed dose in the 
asthmatic situation (5 mg/kg/day for 5 days, s.c.) in fe-
male Sprague-Dawley rats resulted in dropping body 
weight, diaphragm muscle weight, and a 13% reduction 
in maximal specific isometric tetanic tension (Eason et 
al., 2000). In another study, Sprague-Dawley rats treat-
ed with triamcinolone acetonide (5 mg/kg for 9 days, 
i.p.) experienced an average degeneration of nearly 26% 
in the soleus muscle (Lee et al., 2001). Dardevet et al. 
(1995) showed that muscle wasting was more rapid and 
recovery of muscle mass was delayed in older rats after 
administration of dexamethasone. Dexamethasone has 
been used at a dosage of 600 µg/kg/day i.p. for 5 days 
to induce muscle atrophy in Sprague Dawley rats in 
some studies (Noh et al., 2014; Yamamoto et al., 2010). 
However, several investigations have injected dexa-
methasone at 2 mg/kg/day s.c. for 2 weeks in Wistar rats 
(Hedya et al., 2019; Konno, 2005).

One limitation of GC-induced muscle atrophy is that 
muscular protein metabolism is extremely dependent on 
muscle movement and fiber use (Garlick et al., 1989).

Osteoporosis
Chronic consumption of GCs is one of the secondary 

causes of osteoporosis, which has detrimental and irre-
versible effects on bone health. GCs can lead to bone 
fractures independently of a patient’s previous history 
of fracture risk and bone mineral density (BMD). The 
extent of the impact depends on factors such as the pre-

scribed GC dose, duration of treatment, age, and body 
weight (Alan and Alan, 2018; Wood et al., 2018). 

In general, the effects of GCs on osteoporosis devel-
opment occur in two stages. In the primary stage, bone 
destruction is initiated by osteoclasts, while the second-
ary slow stage involves ossification (Weinstein et al., 
1998). GCs interfere with the bone remodeling cycle 
and disrupt the function of bone cells. They suppress 
the maturation and replication of osteoblasts by alter-
ing their pathways from stem cells, primarily through 
the stimulation of peroxisome proliferator-activated 
receptor-γ2 transcription factors (PPARγ) (Ohnaka et 
al., 2005). Supra-physiologic concentrations of GCs 
disturbs osteogenesis by inducing osteoblast apoptosis, 
diminishing osteoblast function and longevity, decreas-
ing the synthesis of collagen type I and osteocalcin, pro-
moting osteoblast and osteocytes death, and disturbing 
mineralization process (Wood et al., 2018; Alan and 
Alan, 2018). In addition, GCs reduce calcium uptake in 
the gastrointestinal tract and inhibit renal calcium re-ab-
sorption, further contributing to bone porosity (Wood et 
al., 2018) . 

Animal studies have been performed on GCs-induced 
osteoporosis for evaluation of novel therapeutic agents 
in mice, rats, rabbits, sheep, pigs, and zebrafish. Among 
these, mice are considered the most suitable model due 
to their similarities with humans in terms of GC effects 
on bone tissue. GCs primarily induce bone resorption 
by osteoclasts and secondary impairment of osteoblast 
function in bone production(Wood et al., 2018).

The s.c. implantation of slow-release prednisolone 
pellets at a dose of 5 mg/kg for 60-days in 6-month-old 
male Swiss Webster mice increased osteoclast function 
while reducing osteoblast activity, leading to a decrease 
in trabecular bone volume (Yao et al., 2008). In another 
study, prednisolone at doses of 1.4 or 2.1 mg/kg, im-
planted with slow-release pellets in 4-month-old female 
C57BL/6J mice for 28 days, resulted in the thinning 
of cancellous bone trabecular and cortical bone area 
(Baschant et al., 2016). A dosage of prednisolone 2–5 
mg/kg/day in mice gets the best result in inducing os-
teoporosis (Wood et al., 2018). Utilization of 3 mg/kg/
day, s.c. methylprednisolone 3 times per week induced 
osteoporosis in female Sprague-Dawley rats (Dalle Car-
bonare et al., 2007). After 8 weeks of methylpredniso-
lone treatment at a dose of 1 mg/kg/day, i.m,. in female 
New Zealand white rabbits, a reduction in BMD of lum-
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bar spine was observed (Baofeng et al., 2010). 
A limitation of GC-induced osteoporosis is that it may 

not occur in rats unless accompanied by a low-calcium 
regimen. Moreover, the guinea pig is not an ideal model 
for GC-induced osteoporosis due to its unique hypotha-
lamic-pituitary-adrenal axis (Turner, 2001).

Osteonecrosis
GCs-induced osteonecrosis affects 9–40% of patients 

treated with GCs for an extended period, even topically. 
There is also a risk of this complication occurring fol-
lowing short-time, high dose GC use via intra-articular 
injections (Weinstein, 2011). Osteonecrosis mainly oc-
curs in the femoral head and is described by a reduced 
trabecular width and an increased number of apoptotic 
osteocytes and osteoblasts (Wood et al., 2018; Boksen-
baum and Mendelson, 1963).

Various factors and their interactions are identified 
in the pathophysiology of GCs-induced osteonecrosis 
including disruption in bone marrow stem cells, bone 
matrix, and cartilage, increased oxidative stress, abnor-
malities in lipid metabolism and the coagulation system, 
endothelial dysfunction and apoptosis of bone cells (Xie 
et al., 2015).  

GCs promote differentiation of bone marrow stem 
cells into adipocytes via increasing the expression of 
adipogenic genes while inhibiting osteogenic differenti-
ation through decreased expression of various osteoblast 
transcription factor genes. These changes result in more 
fat cells, elevated lipid deposition, and insufficient repair 
of lesions in the initial phase of osteonecrosis (Sheng 
et al., 2007; Li et al., 2005). Moreover, GCs cause the 
degeneration of bone matrix and articular cartilage, dis-
rupt the balance between osteoblasts and osteoclasts, re-
duce bone formation, and induce apoptosis of bone cells 
during the development of osteonecrosis (Zheng et al., 
2018; Takano-Murakami et al., 2009).  

A key mechanism in the pathophysiology of osteone-
crosis caused by corticosteroids is ischemia due to endo-
thelial cell damage, hyperlipidemia, fat embolism, and 
intravascular thrombosis, vascular contraction, insuffi-
cient neovascularization, and oxidative damage (Qin et 
al., 2006; Kerachian et al., 2009). 

The New Zealand white rabbit model is a well-known 
animal model for studying GC-induced osteonecrosis. 
In this model, a single intravenous(i.v.) administration 
of lipopolysaccharide (10 μg/kg) followed by three 

administrations of high-dose methylprednisolone (20 
mg/kg/day, i.m.) after 2 to 6 weeks is associated with a 
high incidence of GCs-induced osteonecrosis and a low 
mortality rate (Zhang et al., 2009). In rats, i.p. injection 
of human serum (10 mL/kg/week) for 2 weeks along 
with three doses of methylprednisolone (40 mg/kg/day, 
i.m.) has been used to induce osteonecrosis (Bekler et 
al., 2007). In a modified model, a single dose of lipo-
polysaccharide (0.2 mg/kg, i.v.) followed by pulsed 
therapy with high-dose methylprednisolone (100 mg/
kg, i.p.) as 3 injections for 3 days, followed by 40 mg/
kg, i.p. three times per week during week 2 to week 6, 
induced clinical and histological alterations, showing a 
100% incidence of osteonecrosis in Sprague–Dawley 
rats (Zheng et al., 2018). GCs-induced osteonecrosis 
models have also been established in other animals such 
as pig, mouse, emu, and bipedal chicken albeit with a 
lower incidence rate (Xie et al., 2015). However due to 
the small size of the mouse’s femoral head, diagnosis 
of osteonecrosis via MRI or CT is difficult and limits 
the use of mice as an animal model for osteonecrosis. 
Moreover, many animal studies rely on histopathology 
to evaluate osteonecrosis, which may not always align 
with clinical investigations (Xu et al., 2018). 

Neuropsychiatric System
Depression
Stress experience in individuals is highly related to the 

development of depression, and it may also contribute 
to the severity and recurrence of this mental illness. It 
is known that cortisol regulates neurogenesis, neuronal 
survival, and memory (Anacker et al., 2011). Patients 
with Cushing’s disease or those treated with synthetic 
GCs may experience psychiatric problems similar to 
major depression (Brown et al., 2004).

Numbers of mechanisms are suggested for GCs-in-
duced depression-like behavior in rodents. Administra-
tion of corticosterone, the rodent stress hormone, for one 
week through a 100 mg pellet implantation, has been 
shown to change the serotonin neurotransmitter system 
in male rats. This includes a decrease in 5-HT1A recep-
tor binding in the dentate gyrus and an increase 5-HT2A 
receptor binding in the parietal cortex (Fernandes et al., 
1997). Chronic exposure to corticosterone (40 mg/kg, 
1-month) or unpredictable stress has led to reductions in 
hippocampal volume, alterations in neuronal structure, 
and changes in synapse numbers in rats (Sousa et al., 
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2000; Tata and Anderson, 2010). 
The development of depression due to GCs involves 

the inhibition of neurogenesis through reduced biosyn-
thesis of neurotrophins like brain-derived neurotrophic 
factor, a decrease in tyrosine hydroxylase concentration 
(a rate-limiting enzyme in biosynthesis of catechol-
amines), mitochondrial dysfunction, and increased ox-
idative stress (Ridder et al., 2005; Henn et al., 2004).

As a model of GCs-induced depression, acute expo-
sure to dexamethasone at various doses (single dose 15, 
60 or 250 µ/kg, s.c.) can dose-dependently increase im-
mobility time during the forced swimming test (FST) in 
male NMRI mice (Mesripour et al., 2019). By admin-
istrating the highest dose (250 µ/kg), animals remained 
motionless for a longer period during the FST. In addi-
tion, after administration of 15 µ/kg dexamethasone for 
seven consecutive days, mice showed signs of despair 
during the FST and anhedonia during the sucrose pref-
erence test (Mesripour et al., 2019; Mesripour and Ra-
khshankhah, 2021; Mesripour et al., 2021). 

The main limitation is that the alterations in mood 
caused by GCs are more multifaceted than simple in-
creases or decreases in GCs or their receptors. More-
over, despite many pharmacological investigations into 
GCs-induced depression, the theory has not been thor-
oughly verified in humans (Krishnan and Nestler, 2011). 

Ophthalmologic System
Glaucoma
The long-term and high-dosage of GC administration 

induce ample ocular side effects, including the devel-
opment of ocular hypertension which can initiate iatro-
genic open-angle glaucoma and permanent vision loss. 
Studies have revealed an important connection between 
GCs and primary open-angle glaucoma (Patel et al., 
2019).

In fact, GC-induced ocular hypertension is related 
to a defect in the outflow pathway induced by physi-
cal changes in microstructure of trabecular meshwork, 
which increases resistance to outflow and elevates in-
tra ocular pressure (Stamer and Clerk, 2017). Raghu-
nathan et al. (2015) reported that 4 weeks exposure to 
dexamethasone in primary human trabecular meshwork 
cells resulted in a denser deposited matrix along with 
elevated α-smooth muscle actin expression and upreg-
ulation of fibrotic markers through the stimulation of 
the mitogen-activated protein kinase (MAPK) signaling 

pathway. Moreover, topical treatment of rabbits with 
dexamethasone (0.1%) caused stiffness in trabecular 
meshwork tissues in their study.

It has been demonstrated that chronic endoplasmic re-
ticulum stress is associated with trabecular meshwork 
dysfunction and the development of glaucoma in a 
mouse model (Zode et al., 2011). Experimental models 
of ocular hypertension include many characteristics of 
this disorder in humans and provide valuable insights 
into the pathogenesis of iatrogenic open-angle glauco-
ma induced by GCs.

In most animal studies, dexamethasone has been ap-
plied in topical ocular dosage forms to various species, 
including rabbits, cats, sheep, rats, mice, dogs, cows and 
non-human primates (Overby et al., 2016). The topical 
administration of dexamethasone phosphate (0.1%) as 
eye drops 3 times a day for approximately 6 weeks in 
C57BL/6 mice increased intraocular pressure, accompa-
nied by retinal dysfunction and optic neuropathy, more 
significant than systemic application. A limitation of this 
model is that it needs long-term administration of eye 
drops 3 times a day by an expert individual (Zode et al., 
2014). In another model, anesthetized C57BL/6 J mice 
were peri-ocularly injected with 200 µg/20 µL dexa-
methasone bilaterally once a week for 6 weeks, resulting 
in increased intraocular pressure, dysfunction of trabec-
ular meshwork, progressive optical nerve degeneration. 
and physical and functional loss of retinal ganglion cells 
(Maddineni et al., 2020). Dexamethasone has also been 
delivered via osmotic minipump implanted s.c. during 4 
weeks, resulting in ocular hypertension in mice (Whit-
lock et al., 2010). However, using minipump delivery 
techniques needs surgery and has limitations, including 
severe side effects such as weight loss (Overby et al., 
2016). Moreover, triamcinolone acetonide has also been 
used subconjunctivally at a concentration of 40 mg/mL 
(20 µL bolus) to induce ocular hypertension in mice 
(Kumar et al., 2013).

The main limitation in murine models is the small size 
of their eyes and absence of a lamina cribrosa in the op-
tic nerve (A Bouhenni et al., 2012). 

Intravitreal injection of triamcinolone acetonide, alike 
subconjunctival injection of dexamethasone, for 30 
days also increased intraocular pressure in New Zea-
land white rabbits, although glucose metabolism in the 
aqueous humor was different between these two GCs 
(Song et al., 2011). However, there are some anatomical 



dissimilarities in the trabecular meshwork and aqueous 
outflow pathways between rabbits and humans, limiting 
the use of the rabbit glaucoma model (A Bouhenni et 
al., 2012). 

Cataract
The chronic use of systemic, topical, and possibly in-

haled GCs can cause development of posterior subcap-
sular cataracts. This bilaterally and gradually developing 
side effect of GCs may occur in a range of 22-58% of 
patients (Jobling and Augusteyn, 2002; Turno-Krecicka 
et al., 2016; Cumming et al., 1997; Skalka and Prchal, 
1998). GCs initiate metabolic alterations in the lens, 
gradually reducing glutathione levels, causing protein 
adduct formation, and the accumulation of macromol-
ecules, eventually leading to the formation of cataracts 
(Pescosolido et al., 2001).

The direct effects of GCs include osmotic disturbanc-
es and electrolyte imbalances, which result in vacu-
olization and swelling due to increased cation entry in 
to lens cells. This is caused by the inactivation of so-
dium-potassium adenosine triphosphatase (ATPase) and 
alterations in the expression of cell membrane channel 
genes (Miller et al., 1979). The interaction between GCs 
and proteins can render proteins unstable and suscepti-
ble to oxidation in the eyes (Bucala et al.,1985; Harris 
and Gruber, 1962). 

Besides, GCs suppress defensive antioxidant elements 
such as ascorbic acid and glutathione in lens cells (Job-
ling and Augusteyn, 2002; Harris and Gruber, 1962). 
They also interfere with the proliferation and differen-
tiation of lens epithelial cells into fiber cells, promoting 
the survival of epithelial cells via the dysregulation of 
various growth factors and cell adhesion molecules in 
the eye (James, 2007). Proliferated and undifferentiated 
epithelial cells begin to migrate and settle in the poste-
rior part of the lens, forming large cell masses, which 
contributes to the development of cataracts (Jobling and 
Augusteyn, 2002). 

Another possible cataractogenic mechanism of GCs 
is an augmentation in glucose concentration within lens 
cells, as a result of reduced hexokinase activity and 
elevated glucose-6-phosphate level. (Nishigori et al., 
1987). In summary, GCs disturb function and structure 
of lens cells through osmotic, metabolic, and oxidative 
alterations, ultimately leading to the development of cat-
aracts.

A few studies have established posterior subcapsular 
cataracts in animal models since it occurs after a pro-
longed period of GC treatment. For example, the injec-
tion of betamethasone (2 mg/day subconjunctivally) in 
albino rabbits resulted in cataract signs after 41 weeks, 
which was associated with a diabetic condition start-
ing from week (Tarkkanen et al., 1966). In the study of 
Wood et al. (1967) opacity in the subcapsular lens lay-
er in New Zealand white rabbits was induced after 4-6 
months of topical administration of corticosteroids three 
times a day .

However, Bucala et al. (1985) intravitrealy inject-
ed dexamethasone, prednisolone, and cortisol at doses 
ranging from 20-200 nmol/0.2 mL in rabbitsand report-
ed posterior sub-capsular alterations after 8 days, espe-
cially with a high dose of prednisolone.

Brown Norway rats receiving both topical predniso-
lone solution and i.v. pulses (10 mg/kg/day) showed an-
terior and posterior cataracts after 10 months (Nagai et 
al., 2004). Cataracts can also occur in fetuses of rabbits, 
rats, mice and chickens when GCs are administrated be-
fore birth (Buchman, 2001). Moreover, culturing chick 
embryos in the presence of different GCs, such as dexa-
methasone, hydrocortisone and prednisolone, resulted 
in opacities of lens (Kosano H, Nishigori, 2002).

The main limitation of GC-induced cataracts is the 
need for prolonged administration of GCs, which may 
be associated with other adverse effects.

Conclusion 
In conclusion, GCs, commonly used in the treatment 

of various inflammatory diseases, come with a range 
of side effects these complications vary depending on 
the patient’s risk factors, age, gender, and the dosage 
of GCs administered. Animal models can help us ra-
tionally prescribe GCs, provide appropriate treatment 
regimens, and prevent unwanted side reactions. These 
models offer insights into the potential mechanisms of 
GC actions, guiding the development of GC synthesis 
methods and effective therapeutic strategies to address 
these complications. It is necessary to design several an-
imal models to gain a comprehensive understanding of 
the functional mechanisms of GCs. Induction of some 
complications such as pseudo cerebral tumor (Newton 
and Cooper, 1994), pancreatitis (Levine and McGuire, 
1988), psychosis (Naber et al., 1996) and other clinical-
ly reported adverse effects of GCs should be performed 
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in a variety of animal models to explain the full effects 
of GCs and ways to prevent unwanted outcomes.
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